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Abstract
Structural gender differences in bone mass – characterized by

wider but not thicker bones – are generally attributed to

opposing sex steroid actions in men and women. Recent

findings have redefined the traditional concept of sex

hormones as the main regulators of skeletal sexual dimorphism.

GH–IGF1 action is likely to be the most important

determinant of sex differences in bone mass. Estrogens limit

periosteal bone expansion but stimulate endosteal bone

apposition in females, whereas androgens stimulate radial

bone expansion in males. Androgens not only act directly on

bone through the androgen receptor (AR) but also activate

estrogen receptor-a or -b (ERa or ERb) following

aromatization into estrogens. Both the AR and ERa pathways

are needed to optimize radial cortical bone expansion,
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whereas AR signaling alone is the dominant pathway for

normal male trabecular bone development. Estrogen/ERa-

mediated effects in males may – at least partly – depend on

interaction with IGF1. In addition, sex hormones and their

receptors have an impact on the mechanical sensitivity of the

growing skeleton. AR and ERb signaling may limit the

osteogenic response to loading in males and females

respectively, while ERa may stimulate the response of bone

to mechanical stimulation in the female skeleton. Overall,

current evidence suggests that skeletal sexual dimorphism is

not just the end result of differences in sex steroid secretion

between the sexes, but depends on gender differences in

GH–IGF1 and mechanical sensitivity to loading as well.
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Introduction

Sex steroids are mainly synthesized by the gonads (testis and

ovary), but the adrenals constitute an additional source

(Vanderschueren et al. 2004, Callewaert et al. 2010a). Sex

steroids are involved in the regulation of a number of

important physiological processes, including sexual differen-

tiation of the genitalia, sexual maturation, and reproduction.

Sex hormones also have an impact on skeletal homeostasis,

because they add bone during puberty and subsequently

maintain skeletal integrity, both in men and women (Riggs

et al. 2002). However, gender differences in bone growth

become apparent during puberty, with men reaching higher

peak bone mass, greater bone size, and, ultimately, a stronger

skeleton compared to women (Garn 1970, Seeman 2001).

Puberty builds a bigger, but not a denser, skeleton in males, as

bone mineral acquisition in long bones occurs in proportion

to the volume of the bone (Zamberlan et al. 1996). As a result,

the volumetric bone mineral density (BMD) does not differ

between men and women. In addition, growth during

puberty also builds wider and slightly taller vertebral bodies in
men, without sex differences in trabecular BMD (Gilsanz et al.

1994). As a result of these stronger structural features achieved

during growth, the male skeleton is less susceptible to

osteoporosis later in life (Seeman 2002). Although fewer men

than women sustain fractures during aging, fragility fractures

are common in men and are associated with a significant

burden in terms of morbidity, mortality, and economic cost to

the community (Boonen et al. 2007, Khosla et al. 2008).

Therefore, more insight into the mechanisms involved in

bone mass acquisition is essential to improve our under-

standing of the pathophysiology of osteoporosis and

osteoporotic fracture risk in men.

Skeletal gender differences in radial bone growth (skeletal

sexual dimorphism) are traditionally attributed to stimulatory

‘male’ androgen action as opposed to inhibitory ‘female’

estrogen action on periosteal bone formation. However,

particularly in men, the mechanism of action of sex

steroids on bone growth appears considerably more complex.

Testosterone, the main circulating androgen in males, not

only activates the androgen receptor (AR) but also acts on

the estrogen receptor-a or -b (ERa or ERb) following
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aromatization into 17b-estradiol (E2; Vanderschueren et al.

2004, Callewaert et al. 2010a). Experiments in animals as well as

in a numberof case reports of men with either a loss-of-function

mutation in ERa or an aromatase deficiency provided evidence

that estrogens play a key role in male skeletal homeostasis (Smith

et al. 1994, 2008, Vanderschueren et al. 1997, Vidal et al. 2000,

Bouillon et al. 2004, Rochira et al. 2007). In addition to sex

steroids, other hormones such as GH and insulin-like growth

factor 1 (IGF1) may further contribute to the development of

the skeletal sexual dimorphism. GH and IGF1 – the GH–IGF1

axis – are both primarily responsible for postnatal growth (Lupu

et al. 2001). Moreover, sex steroids and the GH–IGF1 axis

interact closely during puberty (Mauras et al. 1996), optimizing

bone mass acquisition during pubertal growth. Finally, skeletal

growth is further stimulatedby mechanical loading (Frost 2003),

which in turn may be influenced by sex hormones as well.

In fact, mechanical loading increases bone formation in close

association with estrogen signaling, at least in female mice (Lee

et al. 2003). Thus, sex steroids, IGF1, and mechanical stimuli

may both independently and mutually affect the acquisition of

an optimal bonemass during puberty. In this review, three major

questions will be addressed: 1) to what extent do sex steroids or

GH–IGF1 or both influence the skeletal gender differences;

2) what is the relative importance of AR and ERa signaling in

the acquisition of male cortical and trabecular bone mass; and

3) do sex steroids and their receptors affect the adaptive response

of bone to loading?
Hormonal factors involved in the development
of the skeletal sexual dimorphism

Evidence for a role of androgens and estrogens

Puberty represents a critical growth period during which

important gender differences in bone width and strength are

established. In fact, boys develop a larger periosteal perimeter

than girls from mid-puberty onward (Seeman 2001, Kirmani

et al. 2009). In contrast, girls experience less periosteal

expansion but more endocortical apposition compared to

boys. As a result, men not only build up wider bones but also

stronger bones, with cortical bone further away from the

neutral axis of the long bone and more resistant to bending.

Sex hormones have traditionally been considered the primary

mediator of skeletal sexual dimorphism in bone size and

strength. This prevailing opinion was established by the

observation of a reduced periosteal perimeter in orchidecto-

mized growing male rats versus an increased periosteal

circumference in ovariectomized female rats (Turner et al.

1990). This landmark study led to the assumption that

androgens were stimulatory and estrogens inhibitory for male

and female radial bone growth respectively. In line with this

concept, a study in pubertal mouse models showed that

androgen withdrawal, as induced by orchidectomy, decreases

radial bone expansion in males (Callewaert et al. 2010b).

Ovariectomy, on the other hand, increases radial bone growth
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in females (Callewaert et al. 2010b). However, these hormonal

effects differ in their timing of action, as the androgen-

mediated effects occur only during later stages of puberty,

compared with the earlier effect of estrogens and are in line

with the traditional concept that androgens stimulate male

bone size whereas estrogens limit female bone size. However,

recent findings have partly redefined this concept, with a

significant body of evidence pointing to a role of estrogen

action in males as well. In male mice, estrogen deficiency on

top of androgen withdrawal further reduces radial bone

expansion, at least during the early stages of puberty

(Callewaert et al. 2010b), in line with the concept that

aromatization of androgens into estrogens also contributes to

the skeletal gender differences (Fig. 1).
Evidence for a critical role of GH–IGF1

Other hormones such as GH and IGF1 also manifestly

increase during puberty and are regarded as critical regulators

of pubertal bone growth as well (Mauras et al. 1996).

Importantly, GH–IGF1 action even appears to be the most

important determinant of gender differences in bone mass in

pubertal mice (Callewaert et al. 2010b). IGF1 levels are indeed

higher in male versus female mice during early puberty, the

time window during which most of the gender differences are

established. Moreover, mice with a disrupted GH receptor

(GHR) – associated with extremely low IGF1 levels – also

have a severely reduced radial bone expansion without gender

differences in radial bone growth (Callewaert et al. 2010b).

Earlier observations of severe growth retardation in mice

lacking GHR, IGF1, or both support the crucial role of GH

and IGF1 in the control of postnatal bone growth (Lupu et al.

2001; Fig. 1). Human and animal studies agree with this

concept, as IGF1 treatment in GHR knockout (KO) mice or

patients with GH resistance stimulates growth or even reverses

the detrimental effects of GHR deficiency (Laron 1999, Sims

et al. 2000). Beside this direct action of GH/IGF1, however,

there is also ample evidence for an interacting role of sex

steroids and IGF1. For instance, the pubertal increase in

GH–IGF1 appears to be mediated by the sex steroids.

Neonatal testosterone secretion establishes the GH secretion

pattern, which, in turn, also determines masculinization of

hepatic steroid metabolism ( Jansson et al. 1985). In addition,

perinatal androgens appear to be a key determinant of adult

bone length in males, as shown by the lower femoral and tibial

length in androgen-deficient hypogonadal mice compared

with age-matched orchidectomized mice (Sims et al. 2006).

In addition, it is now well established, both in humans and

animals, that estrogens may interact with the GH–IGF1 axis

( Juul 2001, Venken et al. 2005). In fact, estrogen-related

changes in male bone mass seem to be IGF1-dependent. In

male mice, estrogen-dependent skeletal changes are associated

with lower IGF1 levels during early puberty. Similar findings

have been reported in ERaKO mice and male rats treated

with an aromatase inhibitor (Vanderschueren et al. 1997,

Vidal et al. 2000). Likewise, aromatase inhibition in
www.endocrinology-journals.org
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Figure 1 Insulin-like growth factor 1 (IGF1) is the primary determinant of the skeletal sexual dimorphism, which develops during
puberty. Male androgen action also contributes to the larger male bone size by stimulating radial bone expansion mostly during
late puberty. Male estrogen action has early stimulatory effects on periosteal bone expansion, but may be regulated through
changes in IGF1 levels. In female mice, estrogens limit radial bone expansion during early puberty.
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adolescent boys decreases estrogen levels and is associated with

a concomitant reduction in IGF1 levels (Mauras et al. 2000).

Moreover, a recent study in cartilage-specific ERaKO mice

showed that low E2 levels during early skeletal maturation

stimulate longitudinal bone growth through actions on the

GH–IGF1 axis, independent of ERa in growth plate cartilage

(Borjesson et al. 2010). Collectively, a significant body of

evidence identifies GH/IGF1 as a critical regulator of skeletal

gender differences. Nevertheless, the notion that sex steroids

may interact with IGF1 suggests that the androgens and

estrogens may indirectly affect the skeletal sexual dimorphism

as well, through interaction with GH–IGF1 (Fig. 1).

Overall, the development of skeletal sexual dimorphism in

mice resembles the human situation, since most of the gender

differences in bone mass are established during puberty and

associated with similar hormonal changes (Fig. 1). Never-

theless, some differences become apparent as well. In humans,

it is generally accepted that sex differences in bone

morphology are the result of the earlier onset of puberty in

girls and the longer duration of puberty in boys, without

major differences in absolute growth rate between sexes

(Seeman 2002, Iuliano-Burns et al. 2009). In mice, on the

other hand, absolute gender differences in periosteal and

endocortical bone formation also contribute to the develop-

ment of the skeletal sexual dimorphism (Callewaert et al.

2010b). In fact, periosteal and endosteal bone formation rates,
www.endocrinology-journals.org
as determined by dynamic histomorphometry, are higher and

lower respectively in male versus female mice. Obviously,

similar information on dynamic bone formation rates in

humans is not available. Differences with respect to pubertal

GH–IGF1 secretion may exist between humans and mice as

well. In contrast to mice, peak IGF1 levels are not different

between boys and girls. However, girls have an earlier IGF1

peak associated with the earlier onset of puberty (Leger et al.

2007). Overall, extrapolation of mice data on hormonal

determinants of skeletal sexual dimorphism to the human

condition should be handled with caution.
Relative importance of androgens and estrogens
during male bone growth

It has become increasingly clear that androgen signaling in

males is far more complex than originally anticipated.

A significant body of evidence in humans and animals has now

firmly established that at least part of the androgen-mediated

bone growth in males may be mediated through conversion of

androgens into estrogens and subsequent ERa activation.

In fact, aromatase-deficient men, estrogen-resistant men,

as well as transgenic mice lacking the aromatase or ERa

gene all present with low bone mass (Vidal et al. 2000,

Miyaura et al. 2001, Bouillon et al. 2004, Rochira et al. 2007,
Journal of Endocrinology (2010) 207, 127–134
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Smith et al. 2008). Together, these findings support the view

that estrogens are indispensable for male skeletal health.

Nevertheless, more conclusive evidence on the relative

importance and differential roles of AR and ERa in cortical

and trabecular bone mass accrual and maintenance was only

recently provided by the longitudinal evaluation of male mice

lacking both AR and ERa (Callewaert et al. 2009). This study

supports AR activation as being solely responsible for the

development and maintenance of male trabecular bone

mass, since AR inactivation – in the presence or absence of

ERa – results in a severely reduced trabecular bone mass

with increased bone turnover (Callewaert et al. 2009). Similar

changes (also described in other ARKO models; Kawano

et al. 2003, Venken et al. 2006) are the main features of

hypogonadal osteoporosis as well (Finkelstein et al. 1989).

Along the same line, testosterone treatment restores orchi-

dectomy-induced trabecular bone loss in male mice (Venken

et al. 2006), adding further evidence to the concept of AR

signaling as a critical regulator of the development of normal

male trabecular bone mass. On the other hand, administration

of an aromatase inhibitor in ARKO and orchidectomized

mice has no effect on trabecular bone (Venken et al. 2006),

suggesting that residual ERa activation fails to restore or

compensate AR-mediated bone loss. This lack of a role of

ERa during male trabecular bone growth sharply contrasts to

the important role of ERa in female mice (Lindberg et al.

2001), or with the pharmacological effect of (supraphysio-

logical) estrogen administration in orchidectomized male

mice (Vandenput et al. 2001). Moreover, various studies even

report an increased trabecular bone mass in ERaKO mice

(Vandenput et al. 2001, Sims et al. 2003, Callewaert et al.

2009), which could be attributed to higher androgen levels

acting through the AR. In line with this assumption, surgical

castration or anti-androgen treatment of ERaKO mice

normalizes the trabecular bone mass in these mice (Vandenput

et al. 2001, Sims et al. 2003). Together, these observations

clearly define AR and ERa activation as the primary

determinant of trabecular bone development in male and

female mice respectively.

In contrast to their role in trabecular bone, AR and ERa
are both required for optimal stimulation of male cortical

bone mass in male mice. In fact, AR–ERa ‘double’ KO mice

have lower cortical bone mass compared with either ARKO

or ERaKO mice alone (Callewaert et al. 2009). Likewise,

administration of an aromatase inhibitor further reduces

cortical bone mass in orchidectomized mice (Callewaert et al.

2010b). In line with these findings, testosterone action on

periosteal bone formation and cortical thickness is blunted by

an aromatase inhibitor in orchidectomized mice (Venken et al.

2006). The importance of aromatization of androgens into

estrogens for cortical bone expansion is also supported by

observations in humans. Cortical bone dimensions failed to

enlarge in an adolescent aromatase-deficient boy despite

supranormal testosterone concentrations (Bouillon et al.

2004). In this patient, estrogen treatment substantially

increased bone size, suggesting that optimal cortical bone
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expansion requires activation of both AR and ERa, not only

in mice but also in humans. Beside ERa, estrogens might also

activate ERb. In contrast to female ERbKO mice – which

showed an increased cortical bone mineral content and cross-

sectional area – ERb does not appear to play any role in male

skeletal growth, since male ERbKO do not display a bone

phenotype (Windahl et al. 1999, Vidal et al. 2000, Sims et al.

2002). Thus, ERa but not ERb appears to mediate estrogen

actions during male skeletal growth. Although AR activation

is the dominant pathway of androgen signaling for male

trabecular bone growth and maintenance, it would seem

therefore that AR and ERa activation are both required to

optimize cortical bone growth (Fig. 2).
Androgen signaling and the mechanical sensitivity
of the male skeleton

Functional response of bone to loading

Mechanical loading has a major impact on skeletal growth.

The change in the body weight and the resulting mechanical

stimulation of the skeleton during puberty are substantial.

Since overall growth rate is higher in males than females, the

male skeleton encounters higher mechanical demands. It is

therefore tempting to speculate that this higher load bearing

in males also stimulates bone growth to a greater extent than

in females, as reflected by more periosteal bone formation

during puberty (Callewaert et al. 2010b). The stimulatory role

of mechanical loading and physical activity on bone

expansion has been well documented in numerous experi-

mental and clinical studies. A range of noninvasive axial

loading models, using various animal models subjected to

different exercise regimens, have provided insights into the

anabolic response of bone to loading (Mosley et al. 1997,

Mosley & Lanyon 1998, Hsieh & Turner 2001, Srinivasan

et al. 2002). Overall, these animal studies have consistently

indicated that mechanical loading influences the morphology

of growing bone by increasing bone formation more than

resorption. In humans, most evidence is derived from cross-

sectional observations. For instance, tennis players have been

shown to have larger cortical thickness in the dominant

playing arm compared with the nonplaying arm (Bass et al.

2002). Moreover, the increase in bone mass in elite gymnasts

persists after retirement, suggesting that the beneficial effects

of loading may induce lifelong benefits to bone strength

(Bass et al. 1998). Similar findings have been obtained in a

few longitudinal studies, reporting significant side-to-side

differences in bone size and strength in tennis players 1.5–3

years after retirement (Haapasalo et al. 2000). However, the

assumption that skeletal benefits obtained from exercise may

be maintained into older age remains uncertain, as

unequivocal longitudinal evidence is currently lacking. The

timing and duration of exercise also influences the response to

loading in humans. In fact, different responses to loading have

been reported in pre-, peri-, and postpubertal tennis players.
www.endocrinology-journals.org
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Figure 2 Differential roles of androgen receptor (AR) and estrogen receptor-a or -b (ERa or -b) signaling in the accrual of an
optimal cortical and trabecular bone mass in male and female mice. E2, 17b-estradiol.
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In female players, loading before puberty and during early

puberty enhances periosteal bone formation and bone

strength, whereas loading during late puberty bone is mainly

accumulated at the endocortical bone surface without major

changes in bone strength (Bass et al. 2002). In male players, on

the other hand, periosteal expansion in response to loading is

most pronounced in prepubertal and peripubertal boys and

then tends to plateau (Ducher et al. 2009). It would seem

therefore that pubertal growth and sex hormones appear to

influence the adaptive response to exercise, and this

interaction may be different in boys and girls.
Interaction of sex steroids and mechanical loading

Sex steroids may also modulate the response of bone to

mechanical stimulation. This hypothesis originates from

rodent studies, showing that female rats have more bone

than male rats relative to body weight (Saville 1969, Wang

et al. 2003). A study in human observed a similar evolution, as

the increase in bone mass relative to muscle mass is greater in

girls compared with boys during puberty (Schiessl et al. 1998),

even after adjustment for fat mass (Ferretti et al. 1998). These

observations suggest that estrogens alter the mechanosensi-

tivity of bones, so that more bone is accumulated than is

needed mechanically. Moreover, it has been hypothesized that

estrogen withdrawal during menopause impairs the mechani-

cally adaptive mechanism, and hereby contributes to

postmenopausal bone loss and the development of osteo-

porosis (Lanyon & Skerry 2001). Exercise, however, is

generally believed to stimulate periosteal bone formation,

whereas estrogen appears to have an inhibitory effect in

females – at least in mice (Callewaert et al. 2010b). For

instance, prepubertal female tennis players with low estrogen
www.endocrinology-journals.org
concentrations show a more favorable periosteal response

compared to postpubertal girls with high estrogen levels (Bass

et al. 2002). Concurrently, estrogen supplementation in male

rats appears to suppress the periosteal response to mechanical

loading (Saxon & Turner 2006). According to in vitro as well

as in vivo rodent studies, sex steroid signaling and mechanical

loading may also share common signaling pathways. Estrogen

and mechanical strain stimulate proliferation independently in

osteoblast-like cells derived from male and female rats as

well as in human osteoblast cells (Damien et al. 2000, Cheng

et al. 2002). Nevertheless, ER modulators and antagonists

block the increase in proliferation in response to mechanical

strain, whereas dihydrotestosterone (DHT) and AR activation

apparently are not involved. These findings suggest that ERs,

but not AR, influence the response to strain. As a proof of this

concept, periosteal bone formation in response to in vivo ulna

loading is significantly reduced in female ERaKO mice

(Lee et al. 2003). In contrast, disruption of ERb increases

periosteal bone formation following loading in female but not

in male mice (Saxon et al. 2007). Together, these findings

clearly indicate that sex hormone signaling interferes with the

mechanical response to loading, at least in female mice, with

ERa and ERb having antagonistic effects. A recent report

also investigated the role of sex steroid receptors in the

mechanical sensitivity of the male skeleton (Callewaert et al.

2010c). This study suggests that ERa does not interfere with

the adaptive response in males, which is in sharp contrast with

the above-mentioned crucial role of ERa in females. Indeed,

periosteal bone formation is similarly increased following

loading in male ERaKO compared with wild-type mice. The

apparent gender-dependent importance of ERa in mice is

also supported by observations in humans, since puberty and

sex steroid exposure influence the mechanical bone response
Journal of Endocrinology (2010) 207, 127–134
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differently in boys and girls (Bass et al. 2002, Ducher et al.

2009). In addition, AR activation may even limit the response

to mechanical stimulation, since AR deletion – both in the

presence and absence of ERa – increases the periosteal bone

response to loading (Callewaert et al. 2010c). AR signaling not

only increases periosteal bone formation following loading,

but also lowers SOST and sclerostin expression (Callewaert

et al. 2010c). Sclerostin, which is encoded by the SOST gene,

is the principal osteocyte-specific inhibitor of bone formation

known to antagonize Wnt/b-catenin signaling (Poole et al.

2005, ten Dijke et al. 2008). The role of osteocyte-specific

sclerostin signaling in mechanotransduction has previously

been demonstrated in both loading and unloading conditions

(Robling et al. 2008, Lin et al. 2009). Therefore, AR signaling

may interfere with the inhibiting effect of sclerostin signaling

on bone formation. In conclusion, in vitro and in vivo animal

data as well as observations in humans have indicated that

estrogen may modulate the effects of loading in females. In

fact, ERa activation is required for the full osteogenic

response to loading, whereas ERb activation appears to

inhibit periosteal bone formation following loading in

females. In contrast to female mice, ERa and ERb apparently

are not involved in the response to loading in male mice. AR

signaling, on the other hand, limits the anabolic response to

mechanical loading in male mice, possibly through

interaction with sclerostin signaling (Fig. 3).
Conclusion

GH/IGF1 action, more than sex steroid action, appears to be

the primary determinant of gender differences in pubertal

bone growth, which, in turn, may be influenced by sex

hormones (e.g. neonatal imprinting). Beside GH/IGF1,
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estrogens limit periosteal bone expansion but stimulate

endocortical apposition in females. In males, both androgens

and estrogens stimulate periosteal bone expansion and hence

cortical bone growth during puberty. However, estrogen

action on male cortical bone may at least partly be explained

by concomitant changes in IGF1 (Fig. 1). In contrast with its

role in cortical bone growth, AR activation alone is sufficient

for the development of trabecular bone mass in males (Fig. 2).

Finally, sex steroids and their receptors also have an impact on

the mechanical sensitivity of the male and female skeleton.

AR and ERb signaling limit the osteogenic response to

mechanical loading in male and female mice respectively.

ERa activation, on the other hand, stimulates bone formation

in response to mechanical loading in female but not male

mice (Fig. 3). Therefore, skeletal sexual dimorphism is not

only determined by androgen action in males and estrogen

action in females respectively but also by complex gender-

and time-specific interactions between sex hormones,

GH–IGF1, and mechanical loading.
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